skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Honglu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Global food production faces persistent threats from environmental challenges and pathogenic attacks, leading to significant yield losses. Conventional strategies to combat pathogens, such as fungicides and disease‐resistant breeding, are limited by environmental contamination and emergence of pathogen resistance. Herein, we engineered sunlight‐sensitive and biodegradable carbon dots (CDs) capable of generating reactive oxygen species (ROS), offering a novel and sustainable approach for plant protection. Our study demonstrates that CDs function as dual‐purpose materials: priming plant immune responses and serving as broad‐spectrum antifungal agents. Foliar application of CDs generated ROS under light, and the ROS could damage the plant cell wall and trigger cell wall‐mediated immunity. Immune activation enhanced plant resistance against pathogens without compromising photosynthetic efficiency or yield. Specifically, spray treatment with CDs at 240 mg/L (2 mL per plant) reduced the incidence of grey mould inN. benthamianaand tomato leaves by 44% and 12%, respectively, and late blight in tomato leaves by 31%. Moreover, CDs (480 mg/L, 1 mL) combined with continuous sunlight irradiation (simulated by xenon lamp, 9.4 × 105lux) showed a broad‐spectrum antifungal activity. The inhibition ratios for mycelium growth were 66.5% forP. capsici, 8% forS. sclerotiorumand 100% forB. cinerea, respectively. Mechanistic studies revealed that CDs effectively inhibited mycelium growth by damaging hyphae and spore structures, thereby disrupting the propagation and vitality of pathogens. These findings suggest that CDs offer a promising, eco‐friendly strategy for sustainable crop protection, with potential for practical agricultural applications that maintain crop yields and minimize environmental impact. 
    more » « less
    Free, publicly-accessible full text available March 16, 2026